On *s*-quasinormally embedded or weakly *s*-permutable subgroups of finite groups

Ping Kang Tianjin Polytechnic University Department of Mathematics No. 399 BinShuiWest Road, 300387 Tianjin People's Republic of China kangping2929@163.com Hong Pan Xinyang Normal University College of Mathematics and Information Science No.237 Chang'an Road , 464000 Xinyang People's Republic of China panhong372@163.com

Abstract: Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G; H is said to be weakly s-permutable in G if there is a subnormal subgroup T of G such that G = HT and $H \cap T \leq H_{sG}$, where H_{sG} is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P| and study the structure of G under the assumption that every subgroup H of P with |H| = |D| is either s-quasinormally embedded or weakly s-permutable in G. Some recent results are generalized and unified.

Key–Words: s-quasinormally embedded subgroup; Weakly *s*-permutable subgroup; Solvable groups; Saturated formation; Finite groups.

1 Introduction

All groups considered in this paper are finite. We use conventional notions and notation. G always means a group, |G| denotes the order of G and $\pi(G)$ denotes the set of all primes dividing |G|. Let \mathscr{F} be a class of groups. We call \mathscr{F} a formation, provided that (1) if $G \in \mathscr{F}$ and $H \trianglelefteq G$, then $G/H \in \mathscr{F}$, and (2) if G/M and G/N are in \mathscr{F} , then $G/(M \cap N)$ is in \mathscr{F} for any normal subgroups M, N of G. A formation \mathscr{F} is said to be saturated if $G/\Phi(G) \in \mathscr{F}$ implies that $G \in \mathscr{F}$. In this paper, \mathscr{U} will denote the class of all supersolvable groups. Clearly, \mathscr{U} is a saturated formation.

A subgroup H of G is called s-quasinormal (or s-permutable, π -quasinormal) in G provided H permutes with all Sylow subgroups of G, i.e., HP =PH for any Sylow subgroup P of G. This concept was introduced by Kegel in [5] and has been studied extensively by Deskins [2] and Schmidt [12]. More recently, Ballester-Bolinches and Pedraza-Aquilera [1] generalized s-quasinormal subgroups to s-quasinormally embedded subgroups. A subgroup H is said to be *s*-quasinormally embedded in G if for each prime p dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G. Clearly, every s-quasinormal subgroup of G is an s-quasinormally embedded subgroup of G, but the converse does not hold. Many authors consider minimal or maximal

subgroups of a Sylow subgroup of a group when investigating the structure of G, such as in [1-2], [5-10] and [12-16], etc. For example, Li, Wang and Wei in [10] provide the following result: Let G be a group and P a Sylow p-subgroup of G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. If every maximal subgroup of P is s-quasinormally embedded in G, then G is p-nilpotent. Recently, Wei and Guo in [14] prove the following result: Let p be the smallest prime dividing the order of a group G and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if there is a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is s-quasinormally embedded in G.

As another generalization of the normality, Skiba in [11] introduced the following concept: A subgroup H of G is said to be weakly *s*-permutable in G if there is a subnormal subgroup T of G such that G = HTand $H \cap T \leq H_{sG}$, where H_{sG} is the subgroup of H generated by all those subgroups of H which are *s*-permutable in G. Clearly, every *s*-permutable subgroup of G is an weakly *s*-permutable subgroup of G, but the converse does not hold. He provides the following result: Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup P of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is weakly *s*-permutable in G, where $F^*(E)$ is the generalized Fitting subgroup of E. Then $G \in \mathscr{F}$.

The aim of this article is to unify and improve above Theorems using s-quasinormally embedded or weakly s-permutable subgroups. Our main theorem is the following result: Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup P of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2group and |P:D| > 2) is either s-quasinormally embedded or weakly s-permutable in G, where $F^*(E)$ is the generalized Fitting subgroup of E. Then $G \in \mathscr{F}$.

2 Basic definitions and preliminary results

In this section, we collect some known results that are useful later.

Lemma 1 ([1]) Suppose that U is s-quasinormally embedded in a group G, and let $H \leq G$ and $K \leq G$. Then the following assertions hold.

(i) If $U \leq H$, then U is s-quasinormally embedded in H;

(ii) UK is s-quasinormally embedded in G and UK/K is s-quasinormally embedded in G/K;

(iii) If $K \leq H$ and H/K is s-quasinormally embedded in G/K, then H is s-quasinormally embedded in G.

Lemma 2 ([11]) Let H be a weakly s-permutable subgroup of a group G.

(i) If $H \leq K \leq G$, then H is weakly spermutable in K;

(ii) If N is normal in G and $N \leq H \leq G$, then H/N is weakly s-permutable in G/N;

(iii) If H is a π -subgroup and N is a normal π' -subgroup of G, then HN/N is weakly s-permutable in G/N;

(iv) Suppose H is a p-group for some prime p and H is not s-permutable in G. Then G has a normal subgroup M such that |G:M| = p and G = HM.

Lemma 3 ([13]) Let G be a group, K an squasinormal subgroup of G and P a Sylow psubgroup of K, where p is a prime. If either $P \leq O_p(G)$ or $K_G = 1$, then P is s-quasinormal in G. **Lemma 4** ([12]) If P is an s-quasinormal psubgroup of a group G for some prime p, then $N_G(P) \ge O^p(G)$.

Lemma 5 ([13]) Let G be a group and p a prime dividing |G| with (|G|, p - 1) = 1.

(i) If N is normal in G of order p, then $N \leq Z(G)$;

(ii) If G has cyclic Sylow p-subgroup, then G is p-nilpotent;

(iii) If $M \leq G$ and [G:M] = p, then $M \leq G$.

Lemma 6 ([10]) Let G be a group and P a Sylow psubgroup of G, where p is a prime divisor of |G| with (|G|, p-1) = 1. If every maximal subgroup of P is squasinormally embedded in G, then G is p-nilpotent.

Lemma 7 ([3, III, 5.2 and IV, 5.4]) Suppose that p is a prime and G is a minimal non-p-nilpotent group, i.e., G is not a p-nilpotent group but whose proper subgroups are all p-nilpotent.

(i) G has a normal Sylow p-subgroup P for some prime p and G = PQ, where Q is a non-normal cyclic q-subgroup for some prime $q \neq p$.

(ii) $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$.

(iii) The exponent of P is p or 4.

Lemma 8 ([6]) Let H be a nilpotent subgroup of a group G. Then the following statements are equivalent:

(i) H is s-quasinormal in G;

(ii) $H \leq F(G)$ and H is s-quasinormally embedded in G.

Lemma 9 ([14]) Let N be an elementary abelian normal p-subgroup of a group G. If there exists a subgroup D in N such that 1 < |D| < |N| and every subgroup H of N with |H| = |D| is s-quasinormally embedded in G, then there exists a maximal subgroup M of N such that M is normal in G.

Lemma 10 ([3, VI, 4.10]) Assume that A and B are two subgroups of a group G and $G \neq AB$. If $AB^g = B^g A$ holds for any $g \in G$, then either A or B is contained in a nontrivial normal subgroup of G.

The generalized Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasinilpotent subgroup of G. Its definition and important properties can be found in [4, X, 13]. We would like to give the following basic facts we will use in our proof. **Lemma 11** ([4, X,13]) Let G be a group and M a subgroup of G.

(i) If M is normal in G, then $F^*(M) \leq F^*(G)$; (ii) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = Soc(F(G)C_G(F(G))/F(G))$;

(iii) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is solvable, then $F^*(G) = F(G)$.

Lemma 12 ([11]) Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup P of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is weakly s-permutable in G, where $F^*(E)$ is the generalized Fitting subgroup of E. Then $G \in \mathscr{F}$.

3 Main results

Theorem 13 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is either s-quasinormally embedded or weakly s-permutable in G. Then G is p-nilpotent.

Proof. Assume that the theorem is not true and let G be a counterexample of minimal order. We derive a contradiction in several steps.

By Lemmas 1 and 2, the following two steps are obvious.

Step 1. $O_{p'}(G) = 1$.

Step 2. G has a unique minimal normal subgroup N and G/N is p-nilpotent. Moreover, $\Phi(G) = 1$.

Step 3. $O_p(G) = 1$.

If $O_p(G) \neq 1$, then step 2 yields $N \leq O_p(G)$ and $\Phi(O_p(G)) \leq \Phi(G) = 1$. Therefore, G has a maximal subgroup M such that G = MN and $G/N \cong M$ is *p*-nilpotent. Since $O_p(G) \cap M$ is normalized by N and M, we conclude that $O_p(G) \cap M$ is normal in G. The uniqueness of N yields $N = O_p(G)$. Clearly, $P = N(P \cap M)$. Furthermore, $P \cap M < P$, and, thus there exists a maximal subgroup P_1 of P such that $P \cap M < P_1$. Hence, $P = NP_1$. By hypothesis, P_1 is s-quasinormally embedded or weakly spermutable in G. Suppose first P_1 is s-quasinormally embedded in G. Then there is an s-quasinormal subgroup K of G such that $P_1 \in Syl_p(K)$. If $K_G \neq 1$, then $N \leq K$. Since N is a normal p-subgroup of K and $P_1 \in Syl_p(K)$, we have that $N \leq P_1$, a contradiction. Hence $K_G = 1$, and so by Lemma 3 P_1 is squasinormal in G. By Lemma 4, $O^p(G) \leq N_G(P_1)$, $P_1 \leq G$. Then $N \cap P_1 = 1$ and |N| = p. By Lemma 5, $N \leq Z(G)$ and hence G is p-nilpotent, a contradiction. Therefore, we may assume that P_1 is weakly s-permutable in G. Then there is a subnormal subgroup T of G such that $G = P_1T$ and

$$P_1 \cap T \le (P_1)_{sG} \le O_p(G) = N \le O^p(G)$$

because N is the unique minimal normal subgroup of G. Since |G:T| is a power of $p, O^p(G) \leq T$. Hence,

$$P_1 \cap T \le (P_1)_{sG} \le O^p(G) \cap P_1 \le T \cap P_1,$$

and so

$$P_1 \cap T = (P_1)_{sG} = O^p(G) \cap P_1.$$

Consequently, $G = PO^p(G)$ implies that $(P_1)_{sG}$ is normal in G by Lemma 4. By the minimality of N, we have $(P_1)_{sG} = N$ or $(P_1)_{sG} = 1$. If $(P_1)_{sG} = N$, then $N \leq P_1$ and $P = NP_1 = P_1$, a contradiction. Thus $P_1 \cap T = (P_1)_{sG} = 1$, and so $|T|_p = p$. Then T is p-nilpotent. Let $T_{p'}$ be the normal p-complement of T. Then $T_{p'}$ is subnormal in G and $T_{p'}$ is a p'-Hall subgroup of G. It follows that $T_{p'}$ is the normal p-complement of G, a contradiction.

Step 4. The final contradiction.

If P has a maximal subgroup P_1 which is weakly s-permutable in G, then there is a subnormal subgroup T of G such that $G = P_1T$ and

$$P_1 \cap T \le (P_1)_{sG} \le O_p(G) = 1.$$

Then $P_1 \cap T = 1$. Hence $|T|_p = p$. Therefore, T is *p*-nilpotent. Thus G is *p*-nilpotent, a contradiction. Now we may assume that all maximal subgroups of P are *s*-quasinormally embedded in G. Then G is *p*-nilpotent by Lemma 6, a contradiction. \Box

The following corollaries is immediate from Theorem 13.

Corollary 14 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is s-quasinormally embedded in G. Then G is p-nilpotent.

Corollary 15 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is weakly s-permutable in G. Then G is p-nilpotent.

Corollary 16 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is s-permutable in G. Then G is p-nilpotent.

Corollary 18 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is normal in G. Then G is p-nilpotent.

Theorem 19 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is either s-quasinormally embedded or weakly s-permutable in G. Then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

Step 1. $O_{p'}(G) = 1$.

G. Then G is p-nilpotent.

If $O_{p'}(G) \neq 1$, Lemma 1 (ii) and Lemma 2 (iii) guarantee that $G/O_{p'}(G)$ satisfies the hypotheses of the theorem. Thus $G/O_{p'}(G)$ is *p*-nilpotent by the choice of *G*. Then *G* is *p*-nilpotent, a contradiction.

Step 2. |D| > p.

Suppose that |D| = p. Since G is not p-nilpotent, G has a minimal non-p-nilpotent subgroup G_1 . By Lemma 7 (i), $G_1 = [P_1]Q$, where $P_1 \in Syl_p(G_1)$ and $Q \in Syl_q(G_1), p \neq q$. Let $x \in P_1$ and $L = \langle x \rangle$. Then L is of order p or 4 by Lemma 7 (iii). By the hypotheses, L is either s-quasinormally embedded or weakly s-permutable in G, thus in G_1 by Lemma 1 (i) and 2 (i). First, suppose that L is weakly s-permutable in G_1 . Then there is a subnormal subgroup T of G_1 such that $G_1 = LT$ and $L \cap T \leq L_{sG_1}$. Hence $P_1 =$ $P_1 \cap G_1 = P_1 \cap LT = L(P_1 \cap T)$. Since $P_1/\Phi(P_1)$ is abelian, we have $(P_1 \cap T)\Phi(P_1)/\Phi(P_1)$ is normal in $G_1/\Phi(P_1)$. Since $P_1/\Phi(P_1)$ is the minimal normal subgroup of $G_1/\Phi(P_1)$, we have that $P_1 \cap T \leq \Phi(P_1)$ or $P_1 = (P_1 \cap T)\Phi(P_1) = P_1 \cap T$. If $P_1 \cap T \le \Phi(P_1)$, then $L = P_1$ is normal in G_1 . It follows that G_1 is pnilpotent, a contraction. If $P_1 = P_1 \cap T$, then $T = G_1$ and so $L = L_{sG_1}$ is s-permutable in G_1 . For any element x in P_1 , now we have $\langle x \rangle Q$ is a proper subgroup of G_1 , then $\langle x \rangle Q = \langle x \rangle \times Q$. This implies that $G_1 = P_1 \times Q$, a contradiction. Therefore, $L = \langle x \rangle$ is s-quasinormally embedded in G_1 for every element $x \in P_1$, then by Lemma 8 $\langle x \rangle$ is s-quasinormal in G_1 . Thus $LQ \leq G_1$. Therefore, $LQ = L \times Q$. Then $G_1 = P_1 \times Q$, a contradiction.

Step 3.
$$|P:D| > p$$
.

By Theorem 13.

Step 4. *P* has a subgroup *D* such that 1 < |D| < |P| and every subgroup *H* of *P* with order |H| = |D| or with order 2|D| (if *P* is a nonabelian 2-group and |P : D| > 2) is *s*-quasinormally embedded in *G*. Assume that $H \leq P$ such that |H| = |D| and *H* is weakly *s*-permutable in *G*. Then there exists a subnormal subgroup *T* of *G* such that G = HT and $H \cap K \leq H_{sG}$. By Lemma 2 (iv), we may assume *G* has a normal subgroup *M* such that |G : M| = p and G = HM. Since |P : D| > p by Step 3, *M* satisfies the hypotheses of the theorem. The choice of *G* yields that *M* is *p*-nilpotent. It is easy to see that *G* is *p*-nilpotent, contrary to the choice of *G*.

Step 5. If $N \leq P$ and N is minimal normal in G, then $|N| \leq |D|$.

Suppose that |N| > |D|. Since $N \le O_p(G)$, N is elementary abelian. By Lemma 9, N has a maximal subgroup which is normal in G, contrary to the minimality of N.

Step 6. Suppose that $N \leq P$ and N is minimal normal in G. Then G/N is p-nilpotent.

If |N| < |D|, G/N satisfies the hypotheses of the theorem by Lemma 1 (ii). Thus G/N is p-nilpotent by the minimal choice of G. So we may suppose that |N| = |D| by Step 5. We will show that every cyclic subgroup of P/N of order p or order 4 (when P/Nis a non-abelian 2-group) is s-quasinormally embedded in G/N. Let $K \leq P$ and |K/N| = p. By Step 2, N is non-cyclic, so are all subgroups containing N. Hence there is a maximal subgroup $L \neq N$ of K such that K = NL. Of course, |N| = |D| = |L|. Since L is s-quasinormally embedded in G by the hypotheses, K/N = LN/N is s-quasinormally embedded in G/N by Lemma 1 (ii). If p = 2 and P/Nis non-abelian, take a cyclic subgroup X/N of P/Nof order 4. Let K/N be maximal in X/N. Then K is maximal in X and |K/N|=2. Since X is noncyclic and X/N is cyclic, there is a maximal subgroup L of X such that N is not contained in L. Thus X = LN and |L| = |K| = 2|D|. By the hypotheses, L is s-quasinormally embedded in G. By Lemma 1 (ii), X/N = LN/N is s-quasinormally embedded in G/N. Hence G/N satisfies the hypotheses. By the minimal choice of G, G/N is p-nilpotent.

Step 7. $O_p(G) = 1$.

Suppose that $O_p(G) \neq 1$. Take a minimal normal subgroup N of G contained in $O_p(G)$. By Step 6, G/N is p-nilpotent. It is easy to see that N is the unique minimal normal subgroup of G contained in $O_p(G)$. Furthermore, $O_p(G) \cap \Phi(G) = 1$. Hence $O_p(G)$ is an elementary abelian *p*-group. On the other hand, *G* has a maximal subgroup *M* such that G = MN and $M \cap N = 1$. It is easy to deduce that $O_p(G) \cap M = 1$, $N = O_p(G)$ and $M \cong G/N$ is *p*-nilpotent. Then *G* can be written as $G = N(M \cap P)M_{p'}$, where $M_{p'}$ is the normal *p*-complement of *M*. Pick a maximal subgroup *S* of $M_p = P \cap M$. Then $NSM_{p'}$ is a subgroup of *G* with index *p*. Since *p* is the minimal prime in $\pi(G)$, we know that $NSM_{p'}$ is normal in *G*. Now by Step 3 and the induction, we have $NSM_{p'}$ is *p*-nilpotent. Therefore, *G* is *p*-nilpotent, a contradiction.

Step 8. The minimal normal subgroup L of G is not p-nilpotent.

If L is p-nilpotent, then it follows from the fact that $L_{p'}$ char $L \triangleleft G$ that $L_{p'} \leq O_{p'}(G) = 1$. Thus L is a p-group. Whence $L \leq O_p(G) = 1$ by Step 7, a contradiction.

Step 9. G is a non-abelian simple group.

Suppose that G is not a simple group. Take a minimal normal subgroup L of G. Then L < G. If $|L|_p > |D|$, then L is p-nilpotent by the minimal choice of G, contrary to Step 8. If $|L|_p \le |D|$. Take $P_* \ge L \cap P$ such that $|P_*| = p|D|$. Hence P_* is a Sylow p-subgroup of P_*L . Since every maximal subgroup of P_* is of order |D|, every maximal subgroup of P_* is s-quasinormally embedded in G by hypotheses, thus in P_*L by Lemma 1 (i). Now applying Theorem 13, we get P_*L is p-nilpotent. Therefore, L is p-nilpotent, contrary to Step 8.

Step 10. The final contradiction.

Suppose that H is a subgroup of P with |H| = |D| and Q is a Sylow q-subgroup with $q \neq p$. Then $HQ^g = Q^g H$ for any $g \in G$ by the hypotheses that H is *s*-quasinormally embedded in G and Lemma 8. Since G is simple by Step 9, G = HQ from Lemma 10, the final contradiction. \Box

The following corollaries is immediate from Theorem 19.

Corollary 20 Suppose that G is a group. If every non-cyclic Sylow subgroup of G has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either squasinormally embedded or weakly s-permutable in G, then G has a Sylow tower of supersolvable type.

Corollary 21 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or

with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-quasinormally embedded in G. Then G is p-nilpotent.

Corollary 22 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is weakly s-permutable in G. Then G is p-nilpotent.

Corollary 23 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is s-permutable in G. Then G is p-nilpotent.

Corollary 24 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is permutable in G. Then G is p-nilpotent.

Corollary 25 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is normal in G. Then G is p-nilpotent.

Corollary 26 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is either s-quasinormally embedded or weakly s-permutable in G. Then G is p-nilpotent.

Corollary 27 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is s-quasinormally embedded in G. Then G is p-nilpotent.

Corollary 28 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is weakly s-permutable in G. Then G is p-nilpotent.

Corollary 29 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is s-permutable in G. Then G is p-nilpotent.

Corollary 30 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is permutable in G. Then G is p-nilpotent.

Corollary 31 Let p be the smallest prime dividing the order of a group G and P be a Sylow p-subgroup of G. Suppose that every cyclic subgroup of P of prime order or order 4 is normal in G. Then G is p-nilpotent.

Theorem 32 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of E has a subgroup D such that 1 < |D| < |P|and every subgroup H of P with order |H| = |D|or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is either s-quasinormally embedded or weakly s-permutable in G. Then $G \in \mathscr{F}$.

Suppose that P is a non-cyclic Sylow p-**Proof.** subgroup of $E, \forall p \in \pi(E)$. Since P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either s-quasinormally embedded or weakly s-permutable in G by hypotheses, thus in E by Lemma 1 (i). Applying Corollary 20, we conclude that E has a Sylow tower of supersolvable type. Let q be the maximal prime divisor of |E| and $Q \in Syl_q(E)$. Then $Q \leq G$. Since (G/Q, E/Q) satisfies the hypotheses of the theorem, by induction, $G/Q \in \mathscr{F}$. For any subgroup H of Q with |H| = |D|, since $Q \leq O_q(G)$, H is either squasinormal or weakly s-permutable in G by Lemma 8. Since *s*-quasinormal implies weakly *s*-permutable and $F^*(Q) = Q$ by Lemma 11, we get $G \in \mathscr{F}$ by applying Lemma 12. П

The following corollaries is immediate from Theorem 32.

Corollary 33 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of E has a subgroup D such that 1 < |D| < |P|and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-quasinormally embedded in G. Then $G \in \mathscr{F}$.

Corollary 34 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of E has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D|or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is weakly s-permutable in G. Then $G \in \mathcal{F}$.

Corollary 35 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of E has a subgroup D such that 1 < |D| < |P|and every subgroup H of P with order |H| = |D|or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is s-permutable in G. Then $G \in \mathscr{F}$.

Corollary 36 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of E has a subgroup D such that 1 < |D| < |P|and every subgroup H of P with order |H| = |D|or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is permutable in G. Then $G \in \mathscr{F}$.

Corollary 37 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of E has a subgroup D such that 1 < |D| < |P|and every subgroup H of P with order |H| = |D|or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is normal in G. Then $G \in \mathscr{F}$.

Corollary 38 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is either s-quasinormally embedded or weakly s-permutable in G. Then $G \in \mathscr{F}$.

Corollary 39 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is either squasinormally embedded or weakly s-permutable in G. Then $G \in \mathscr{F}$.

Corollary 40 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is s-quasinormally embedded in G. Then $G \in \mathscr{F}$.

Corollary 41 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is s-quasinormally embedded in G. Then $G \in \mathscr{F}$.

Corollary 42 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is weakly s-permutable in G. Then $G \in \mathscr{F}$.

Corollary 43 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is weakly s-permutable in G. Then $G \in \mathscr{F}$.

Corollary 44 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is s-quasinormal in G. Then $G \in \mathscr{F}$.

Corollary 45 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is s-quasinormal in G. Then $G \in \mathscr{F}$.

Corollary 46 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is quasinormal in G. Then $G \in \mathscr{F}$.

Corollary 47 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is quasinormal in G. Then $G \in \mathscr{F}$.

Corollary 48 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every maximal subgroup of any non-cyclic Sylow subgroup of E is normal in G. Then $G \in \mathscr{F}$.

Corollary 49 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Suppose that every cyclic subgroup of any non-cyclic Sylow subgroup of E of prime order or order 4 is normal in G. Then $G \in \mathscr{F}$. **Theorem 50** Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2group and |P:D| > 2) is either s-quasinormally embedded or weakly s-permutable in G. Then $G \in \mathscr{F}$.

Proof. We distinguish two cases:

Case 1. $\mathscr{F} = \mathscr{U}$.

Let G be a minimal counter-example.

Step 1. Every proper normal subgroup N of G containing $F^*(E)$ (if it exists) is supersolvable.

If N is a proper normal subgroup of G containing $F^*(E)$, then $N/N \cap E \cong NE/E$ is supersolvable. By Lemma 11 (iii), $F^*(E) = F^*(F^*(E)) \leq F^*(E \cap N) \leq F^*(E)$, so $F^*(E \cap N) = F^*(E)$. For any Sylow subgroup P of $F^*(E \cap N) = F^*(E)$, P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is either s-quasinormally embedded or weakly spermutable in G by hypotheses, thus in N by Lemma 1 (i) and Lemma 2 (i). So N and $N \cap H$ satisfy the hypotheses of the theorem, the minimal choice of G implies that N is supersolvable.

Step 2. E = G.

If E < G, then $E \in \mathscr{U}$ by Step 1. Hence $F^*(E) = F(E)$ by Lemma 11. It follows that every Sylow subgroup of $F^*(E)$ is normal in G. By Lemma 8, every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is either s-quasinormal or weakly s-permutable in G. Applying Lemma 12 for the special case $\mathscr{F} = \mathscr{U}$, $G \in \mathscr{U}$, a contradiction.

Step 3. $F^*(G) = F(G) < G$.

If $F^*(G) = G$, then $G \in \mathscr{F}$ by Theorem 32, contrary to the choice of G. So $F^*(G) < G$. By Step 1, $F^*(G) \in \mathscr{U}$ and $F^*(G) = F(G)$ by Lemma 11.

Step 4. The final contradiction.

Since $F^*(G) = F(G)$, each non-cyclic Sylow subgroup of $F^*(G)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either *s*-quasinormal or weakly *s*-permutable in G by Lemma 8. Applying Lemma 12, $G \in \mathcal{U}$, a contradiction. Case 2. $\mathscr{F} \neq \mathscr{U}$.

By hypotheses, every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P|and every subgroup H of P with order |H| = |D|or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is either s-quasinormally embedded or weakly s-permutable in G, thus in E Lemma 1 (i) and Lemma 2 (i). Applying Case 1, $E \in \mathscr{U}$. Then $F^*(E) = F(E)$ by Lemma 11. It follows that each Sylow subgroup of $F^*(E)$ is normal in G. By Lemma 8, each non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is either s-quasinormal or weakly s-permutable in G. Applying Lemma 12, $G \in \mathscr{F}$. These complete the proof of the theorem.

The following corollaries are immediate from Theorem 50.

Corollary 51 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2group and |P:D| > 2) is s-quasinormally embedded in G. Then $G \in \mathscr{F}$.

Corollary 52 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is weakly s-permutable in G. Then $G \in \mathscr{F}$.

Corollary 53 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P:D| > 2) is s-permutable in G. Then $G \in \mathscr{F}$.

Corollary 54 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is permutable in G. Then $G \in \mathcal{F}$.

Corollary 55 Let \mathscr{F} be a saturated formation containing \mathscr{U} , the class of all supersolvable groups and G a group with E as a normal subgroup of G such that $G/E \in \mathscr{F}$. Suppose that every non-cyclic Sylow subgroup of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2group and |P:D| > 2) is normal in G. Then $G \in \mathscr{F}$.

Corollary 56 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^*(E)$ is either s-quasinormally embedded or weakly s-permutable in G.

Corollary 57 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^*(E)$ of prime order or order 4 is either squasinormally embedded or weakly s-permutable in G.

Corollary 58 ([9, Theorem 1.1]) Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^*(E)$ is s-quasinormally embedded in G.

Corollary 59 ([9, Theorem 1.2]) Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^*(E)$ of prime order or order 4 is s-quasinormally embedded in G.

Corollary 60 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^*(E)$ is weakly s-permutable in G.

Corollary 61 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^*(E)$ of prime order or order 4 is weakly s-permutable in G. **Corollary 62** ([7, Theorem 3.4]) Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^*(E)$ is s-quasinormal in G.

Corollary 63 ([8, Theorem 3.3]) Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^*(E)$ of prime order or order 4 is s-quasinormal in G.

Corollary 64 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^*(E)$ is quasinormal in G.

Corollary 65 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^*(E)$ of prime order or order 4 is quasinormal in G.

Corollary 66 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every maximal subgroup of any Sylow subgroup of $F^*(E)$ is normal in G.

Corollary 67 Let \mathscr{F} be a saturated formation containing \mathscr{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathscr{F}$. Then $G \in \mathscr{F}$ if and only if every cyclic subgroup of any Sylow subgroup of $F^*(E)$ of prime order or order 4 is normal in G.

4 Conclusion

The results explained in the previous sections show that the method that we replace conditions for all maximal subgroups or all minimal subgroups of Sylow subgroups of G by conditions referring to only some subgroups of Sylow subgroups of G in order to investigate the structure of a finite group is very useful. Results of this type are interesting. In addition, there are many other generalizations of the normality, for example, SS-quasinormal subgroups in [6]; c^* -normality in [13]; X-semipermutable subgroups in [17]; c-supplemented subgroups in [18]. As an application, we may consider using the above special subgroups to characterize the structure of finite groups. **Acknowledgements:** The research was supported financially by the NNSF-China (11201400) and the Research Grant of Tianjin Polytechnic University.

References:

- A. Ballester-Bolinches and M. C. Pedraza-Aquilera, Sufficient conditions for supersolvability of finite groups, *J. Pure Appl. Algebra*, 127, 1998, pp. 113-118.
- [2] W. E. Deskins, On quasinormal subgroups of finite groups, *Math. Z.* 82, 1963, pp. 125-132.
- [3] B. Huppert, *Endliche Gruppen I*, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [4] B. Huppert and N. Blackburn, *Finite Groups III*, Springer-Verlag, Berlin-New York, 1982.
- [5] O. H. Kegel, Sylow Gruppen und subnormalteiler endlicher Gruppen, *Math. Z.*, 78, 1962, pp. 205-221.
- [6] S. Li, Z. Shen and J. Liu, The influence of *SS*quasinormality of some subgroups on the structure of finite groups, *J. Algebra*, 319, 2008, pp. 4275-4287.
- [7] Y. Li, H. Wei and Y. Wang, The influence of π -quasinormality of some subgroups of a finite group, *Arch. Math.*, 81, 2013, pp. 245-252.
- [8] Y. Li and Y. Wang, The influence of minimal subgroups on the structure of a finite group, *Proc. Amer. Math. Soc.*, 131, 2002, pp. 337-3411.
- [9] Y. Li and Y. Wang, On π-quisnormally embedded subgroups of finite groups, J. Algebra, 281, 2004, pp. 109-123.
- [10] Y. Li, Y. Wang and H. Wei, On *p*-nilpotency of finite groups with some subgroups π -quasinormally embedded, *Acta Math. Hungar*, 108, 2005, pp. 283-298.
- [11] A. N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315, 2007, pp. 192-209.
- [12] P. Schmid, Subgroups permutable with all Sylow subgroups, *J. Algebra*, 207, 1998, pp. 285-293.
- [13] H. Wei and Y. Wang, On c*-normality and its properties, J. Group Theory, 10, 2007, pp. 211-223.
- [14] X. Wei and X. Guo, On finite groups with prime-power order *s*-quasinormally embedded subgroups, *Monatsh. Math.*, 162, 2011, pp. 329-339.
- [15] P. Kang, On some primary subgroups and the structure of finite grous, *Monatsh. Math.*, DOI 10.1007/s00605-013-0492-3, 2013.

- [16] M. M. Al-Mosa Al-Shomrani, M. Ramadan and A. A. Heliel, Finite groups whose minimal subgroups are weakly *H*-subgroups, *Acta Mathematica Scientia*, 32B(6), 2012, pp. 2295-2301.
- [17] W. Guo, K. P. Shum and A. N. Skiba, Xsemipermutable subgroups, J Algebra, 315, 2005, pp. 31-41.
- [18] Y. Wang, Finite groups with some subgroups of Sylow subgroups *c*-supplemented, *J. Algebra*, 224, 2000, pp. 464-478.