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Abstract: Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded
in G if for each prime p dividing the order of H , a Sylow p-subgroup of H is also a Sylow p-subgroup of some
s-quasinormal subgroup of G; H is said to be weakly s-permutable in G if there is a subnormal subgroup T of
G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of
H which are s-permutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying
1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H| = |D| is
either s-quasinormally embedded or weakly s-permutable in G. Some recent results are generalized and unified.

Key–Words: s-quasinormally embedded subgroup; Weakly s-permutable subgroup; Solvable groups; Saturated
formation; Finite groups.

1 Introduction
All groups considered in this paper are finite. We use
conventional notions and notation. G always means a
group, |G| denotes the order of G and π(G) denotes
the set of all primes dividing |G|. Let F be a class
of groups. We call F a formation, provided that (1)
if G ∈ F and H E G, then G/H ∈ F , and (2) if
G/M and G/N are in F , then G/(M ∩ N) is in F
for any normal subgroups M , N of G. A formation
F is said to be saturated if G/Φ(G) ∈ F implies
that G ∈ F . In this paper, U will denote the class
of all supersolvable groups. Clearly, U is a saturated
formation.

A subgroup H of G is called s-quasinormal (or
s-permutable, π-quasinormal) in G provided H per-
mutes with all Sylow subgroups of G, i.e, HP =
PH for any Sylow subgroup P of G. This con-
cept was introduced by Kegel in [5] and has been
studied extensively by Deskins [2] and Schmidt
[12]. More recently, Ballester-Bolinches and Pedraza-
Aquilera [1] generalized s-quasinormal subgroups to
s-quasinormally embedded subgroups. A subgroup
H is said to be s-quasinormally embedded in G if
for each prime p dividing the order of H , a Sy-
low p-subgroup of H is also a Sylow p-subgroup of
some s-quasinormal subgroup of G. Clearly, every
s-quasinormal subgroup of G is an s-quasinormally
embedded subgroup of G, but the converse does not
hold. Many authors consider minimal or maximal

subgroups of a Sylow subgroup of a group when in-
vestigating the structure of G, such as in [1-2], [5-10]
and [12-16], etc. For example, Li, Wang and Wei in
[10] provide the following result: Let G be a group
and P a Sylow p-subgroup of G, where p is a prime
divisor of |G| with (|G|, p − 1) = 1. If every max-
imal subgroup of P is s-quasinormally embedded in
G, then G is p-nilpotent. Recently, Wei and Guo in
[14] prove the following result: Let p be the smallest
prime dividing the order of a group G and P a Sylow
p-subgroup of G. Then G is p-nilpotent if and only
if there is a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-quasinormally embedded in G.

As another generalization of the normality, Skiba
in [11] introduced the following concept: A subgroup
H of G is said to be weakly s-permutable in G if there
is a subnormal subgroup T of G such that G = HT
and H ∩ T ≤ HsG, where HsG is the subgroup of
H generated by all those subgroups of H which are
s-permutable in G. Clearly, every s-permutable sub-
group of G is an weakly s-permutable subgroup of
G, but the converse does not hold. He provides the
following result: Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup P of F ∗(E) has a subgroup D such that
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1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is weakly s-permutable in
G, where F ∗(E) is the generalized Fitting subgroup
of E. Then G ∈ F .

The aim of this article is to unify and improve
above Theorems using s-quasinormally embedded or
weakly s-permutable subgroups. Our main theorem is
the following result: Let F be a saturated formation
containing U , the class of all supersolvable groups
and G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup P of F ∗(E) has a subgroup D such that
1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian 2-
group and |P : D| > 2) is either s-quasinormally em-
bedded or weakly s-permutable in G, where F ∗(E) is
the generalized Fitting subgroup of E. Then G ∈ F .

2 Basic definitions and preliminary
results

In this section, we collect some known results that are
useful later.

Lemma 1 ([1]) Suppose that U is s-quasinormally
embedded in a group G, and let H ≤ G and K E G.
Then the following assertions hold.

(i) If U ≤ H , then U is s-quasinormally embed-
ded in H;

(ii) UK is s-quasinormally embedded in G and
UK/K is s-quasinormally embedded in G/K;

(iii) If K ≤ H and H/K is s-quasinormally em-
bedded in G/K, then H is s-quasinormally embedded
in G.

Lemma 2 ([11]) Let H be a weakly s-permutable
subgroup of a group G.

(i) If H ≤ K ≤ G, then H is weakly s-
permutable in K;

(ii) If N is normal in G and N ≤ H ≤ G, then
H/N is weakly s-permutable in G/N ;

(iii) If H is a π-subgroup and N is a normal π′-
subgroup of G, then HN/N is weakly s-permutable
in G/N ;

(iv) Suppose H is a p-group for some prime p and
H is not s-permutable in G. Then G has a normal
subgroup M such that |G : M | = p and G = HM .

Lemma 3 ([13]) Let G be a group, K an s-
quasinormal subgroup of G and P a Sylow p-
subgroup of K, where p is a prime. If either P ≤
Op(G) or KG = 1, then P is s-quasinormal in G.

Lemma 4 ([12]) If P is an s-quasinormal p-
subgroup of a group G for some prime p, then
NG(P ) ≥ Op(G).

Lemma 5 ([13]) Let G be a group and p a prime di-
viding |G| with (|G|, p− 1) = 1.

(i) If N is normal in G of order p, then N ≤
Z(G);

(ii) If G has cyclic Sylow p-subgroup, then G is
p-nilpotent;

(iii) If M ≤ G and [G : M ] = p, then M EG.

Lemma 6 ([10]) Let G be a group and P a Sylow p-
subgroup of G, where p is a prime divisor of |G| with
(|G|, p−1) = 1. If every maximal subgroup of P is s-
quasinormally embedded in G, then G is p-nilpotent.

Lemma 7 ([3, III, 5.2 and IV, 5.4]) Suppose that p
is a prime and G is a minimal non-p-nilpotent group,
i.e., G is not a p-nilpotent group but whose proper
subgroups are all p-nilpotent.

(i) G has a normal Sylow p-subgroup P for some
prime p and G = PQ, where Q is a non-normal cyclic
q-subgroup for some prime q ̸= p.

(ii) P/Φ(P ) is a minimal normal subgroup of
G/Φ(P ).

(iii) The exponent of P is p or 4.

Lemma 8 ([6]) Let H be a nilpotent subgroup of a
group G. Then the following statements are equiva-
lent:

(i) H is s-quasinormal in G;
(ii) H ≤ F (G) and H is s-quasinormally em-

bedded in G.

Lemma 9 ([14]) Let N be an elementary abelian
normal p-subgroup of a group G. If there exists a sub-
group D in N such that 1 < |D| < |N | and every
subgroup H of N with |H| = |D| is s-quasinormally
embedded in G, then there exists a maximal subgroup
M of N such that M is normal in G.

Lemma 10 ([3, VI, 4.10]) Assume that A and B are
two subgroups of a group G and G ̸= AB. If
ABg = BgA holds for any g ∈ G, then either A
or B is contained in a nontrivial normal subgroup of
G.

The generalized Fitting subgroup F ∗(G) of G is
the unique maximal normal quasinilpotent subgroup
of G. Its definition and important properties can be
found in [4, X, 13]. We would like to give the follow-
ing basic facts we will use in our proof.
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Lemma 11 ([4, X,13]) Let G be a group and M a
subgroup of G.

(i) If M is normal in G, then F ∗(M) ≤ F ∗(G);
(ii) F ∗(G) ̸= 1 if G ̸= 1; in fact,

F ∗(G)/F (G) = Soc(F (G)CG(F (G))/F (G));
(iii) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is

solvable, then F ∗(G) = F (G).

Lemma 12 ([11]) Let F be a saturated formation
containing U , the class of all supersolvable groups
and G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sylow
subgroup P of F ∗(E) has a subgroup D such that
1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is weakly s-permutable in
G, where F ∗(E) is the generalized Fitting subgroup
of E. Then G ∈ F .

3 Main results
Theorem 13 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup
of G. If every maximal subgroup of P is either s-
quasinormally embedded or weakly s-permutable in
G. Then G is p-nilpotent.

Proof. Assume that the theorem is not true and let
G be a counterexample of minimal order. We derive a
contradiction in several steps.

By Lemmas 1 and 2, the following two steps are
obvious.

Step 1. Op′(G) = 1.

Step 2. G has a unique minimal normal subgroup
N and G/N is p-nilpotent. Moreover, Φ(G) = 1.

Step 3. Op(G) = 1.

If Op(G) ̸= 1, then step 2 yields N ≤ Op(G) and
Φ(Op(G)) ≤ Φ(G) = 1. Therefore, G has a maximal
subgroup M such that G = MN and G/N ∼= M is
p-nilpotent. Since Op(G) ∩ M is normalized by N
and M , we conclude that Op(G)∩M is normal in G.
The uniqueness of N yields N = Op(G). Clearly,
P = N(P ∩ M). Furthermore, P ∩ M < P , and,
thus there exists a maximal subgroup P1 of P such
that P ∩ M < P1. Hence, P = NP1. By hypoth-
esis, P1 is s-quasinormally embedded or weakly s-
permutable in G. Suppose first P1 is s-quasinormally
embedded in G. Then there is an s-quasinormal sub-
group K of G such that P1 ∈ Sylp(K). If KG ̸= 1,
then N ≤ K. Since N is a normal p-subgroup of K
and P1 ∈ Sylp(K), we have that N ≤ P1, a contra-
diction. Hence KG = 1, and so by Lemma 3 P1 is s-
quasinormal in G. By Lemma 4, Op(G) ≤ NG(P1),

P1 EG. Then N ∩ P1 = 1 and |N | = p. By Lemma
5, N ≤ Z(G) and hence G is p-nilpotent, a contra-
diction. Therefore, we may assume that P1 is weakly
s-permutable in G. Then there is a subnormal sub-
group T of G such that G = P1T and

P1 ∩ T ≤ (P1)sG ≤ Op(G) = N ≤ Op(G)

because N is the unique minimal normal subgroup of
G. Since |G : T | is a power of p, Op(G) ≤ T . Hence,

P1 ∩ T ≤ (P1)sG ≤ Op(G) ∩ P1 ≤ T ∩ P1,

and so

P1 ∩ T = (P1)sG = Op(G) ∩ P1.

Consequently, G = POp(G) implies that (P1)sG is
normal in G by Lemma 4. By the minimality of N ,
we have (P1)sG = N or (P1)sG = 1. If (P1)sG = N ,
then N ≤ P1 and P = NP1 = P1, a contradiction.
Thus P1 ∩ T = (P1)sG = 1, and so |T |p = p. Then
T is p-nilpotent. Let Tp′ be the normal p-complement
of T . Then Tp′ is subnormal in G and Tp′ is a p′-
Hall subgroup of G. It follows that Tp′ is the normal
p-complement of G, a contradiction.

Step 4. The final contradiction.

If P has a maximal subgroup P1 which is weakly
s-permutable in G, then there is a subnormal subgroup
T of G such that G = P1T and

P1 ∩ T ≤ (P1)sG ≤ Op(G) = 1.

Then P1 ∩ T = 1. Hence |T |p = p. Therefore, T
is p-nilpotent. Thus G is p-nilpotent, a contradiction.
Now we may assume that all maximal subgroups of
P are s-quasinormally embedded in G. Then G is p-
nilpotent by Lemma 6, a contradiction. ⊓⊔

The following corollaries is immediate from The-
orem 13.

Corollary 14 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If every maximal subgroup of P is s-quasinormally
embedded in G. Then G is p-nilpotent.

Corollary 15 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup
of G. If every maximal subgroup of P is weakly s-
permutable in G. Then G is p-nilpotent.

Corollary 16 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If every maximal subgroup of P is s-permutable in
G. Then G is p-nilpotent.
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Corollary 17 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If every maximal subgroup of P is permutable in
G. Then G is p-nilpotent.

Corollary 18 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If every maximal subgroup of P is normal in G.
Then G is p-nilpotent.

Theorem 19 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If P has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is either s-quasinormally embedded or
weakly s-permutable in G. Then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be
a counterexample of minimal order. We will derive a
contradiction in several steps.

Step 1. Op′(G) = 1.

If Op′(G) ̸= 1, Lemma 1 (ii) and Lemma 2 (iii)
guarantee that G/Op′(G) satisfies the hypotheses of
the theorem. Thus G/Op′(G) is p-nilpotent by the
choice of G. Then G is p-nilpotent, a contradiction.

Step 2. |D| > p.

Suppose that |D| = p. Since G is not p-nilpotent,
G has a minimal non-p-nilpotent subgroup G1. By
Lemma 7 (i), G1 = [P1]Q, where P1 ∈ Sylp(G1) and
Q ∈ Sylq(G1), p ̸= q. Let x ∈ P1 and L = ⟨x⟩.
Then L is of order p or 4 by Lemma 7 (iii). By the
hypotheses, L is either s-quasinormally embedded or
weakly s-permutable in G, thus in G1 by Lemma 1 (i)
and 2 (i). First, suppose that L is weakly s-permutable
in G1. Then there is a subnormal subgroup T of G1

such that G1 = LT and L ∩ T ≤ LsG1 . Hence P1 =
P1 ∩G1 = P1 ∩ LT = L(P1 ∩ T ). Since P1/Φ(P1)
is abelian, we have (P1 ∩ T )Φ(P1)/Φ(P1) is normal
in G1/Φ(P1). Since P1/Φ(P1) is the minimal normal
subgroup of G1/Φ(P1), we have that P1∩T ≤ Φ(P1)
or P1 = (P1∩T )Φ(P1) = P1∩T . If P1∩T ≤ Φ(P1),
then L = P1 is normal in G1. It follows that G1 is p-
nilpotent, a contraction. If P1 = P1∩T , then T = G1

and so L = LsG1 is s-permutable in G1. For any
element x in P1, now we have ⟨x⟩Q is a proper sub-
group of G1, then ⟨x⟩Q = ⟨x⟩ ×Q. This implies that
G1 = P1 × Q, a contradiction. Therefore, L = ⟨x⟩
is s-quasinormally embedded in G1 for every element
x ∈ P1, then by Lemma 8 ⟨x⟩ is s-quasinormal in G1.
Thus LQ ≤ G1. Therefore, LQ = L × Q. Then
G1 = P1 ×Q, a contradiction.

Step 3. |P : D| > p.

By Theorem 13.

Step 4. P has a subgroup D such that 1 < |D| <
|P | and every subgroup H of P with order |H| =
|D| or with order 2|D| (if P is a nonabelian 2-group
and |P : D| > 2) is s-quasinormally embedded in
G. Assume that H ≤ P such that |H| = |D| and
H is weakly s-permutable in G. Then there exists a
subnormal subgroup T of G such that G = HT and
H ∩ K ≤ HsG. By Lemma 2 (iv), we may assume
G has a normal subgroup M such that |G : M | = p
and G = HM . Since |P : D| > p by Step 3, M
satisfies the hypotheses of the theorem. The choice of
G yields that M is p-nilpotent. It is easy to see that G
is p-nilpotent, contrary to the choice of G.

Step 5. If N ≤ P and N is minimal normal in G,
then |N | ≤ |D|.

Suppose that |N | > |D|. Since N ≤ Op(G), N
is elementary abelian. By Lemma 9, N has a maxi-
mal subgroup which is normal in G, contrary to the
minimality of N .

Step 6. Suppose that N ≤ P and N is minimal
normal in G. Then G/N is p-nilpotent.

If |N | < |D|, G/N satisfies the hypotheses of the
theorem by Lemma 1 (ii). Thus G/N is p-nilpotent
by the minimal choice of G. So we may suppose that
|N | = |D| by Step 5. We will show that every cyclic
subgroup of P/N of order p or order 4 (when P/N
is a non-abelian 2-group) is s-quasinormally embed-
ded in G/N . Let K ≤ P and |K/N | = p. By Step
2, N is non-cyclic, so are all subgroups containing
N . Hence there is a maximal subgroup L ̸= N of K
such that K = NL. Of course, |N | = |D| = |L|.
Since L is s-quasinormally embedded in G by the hy-
potheses, K/N = LN/N is s-quasinormally embed-
ded in G/N by Lemma 1 (ii). If p = 2 and P/N
is non-abelian, take a cyclic subgroup X/N of P/N
of order 4. Let K/N be maximal in X/N . Then
K is maximal in X and |K/N |=2. Since X is non-
cyclic and X/N is cyclic, there is a maximal sub-
group L of X such that N is not contained in L. Thus
X = LN and |L| = |K| = 2|D|. By the hypotheses,
L is s-quasinormally embedded in G. By Lemma 1
(ii), X/N = LN/N is s-quasinormally embedded in
G/N . Hence G/N satisfies the hypotheses. By the
minimal choice of G, G/N is p-nilpotent.

Step 7. Op(G) = 1.

Suppose that Op(G) ̸= 1. Take a minimal nor-
mal subgroup N of G contained in Op(G). By Step
6, G/N is p-nilpotent. It is easy to see that N
is the unique minimal normal subgroup of G con-
tained in Op(G). Furthermore, Op(G) ∩ Φ(G) = 1.
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Hence Op(G) is an elementary abelian p-group. On
the other hand, G has a maximal subgroup M such
that G = MN and M ∩ N = 1. It is easy to
deduce that Op(G) ∩ M = 1, N = Op(G) and
M ∼= G/N is p-nilpotent. Then G can be written
as G = N(M ∩ P )Mp′ , where Mp′ is the normal
p-complement of M . Pick a maximal subgroup S of
Mp = P ∩ M . Then NSMp′ is a subgroup of G
with index p. Since p is the minimal prime in π(G),
we know that NSMp′ is normal in G. Now by Step
3 and the induction, we have NSMp′ is p-nilpotent.
Therefore, G is p-nilpotent, a contradiction.

Step 8. The minimal normal subgroup L of G is
not p-nilpotent.

If L is p-nilpotent, then it follows from the fact
that Lp′ char L ▹ G that Lp′ ≤ Op′(G) = 1. Thus L
is a p-group. Whence L ≤ Op(G) = 1 by Step 7, a
contradiction.

Step 9. G is a non-abelian simple group.

Suppose that G is not a simple group. Take a
minimal normal subgroup L of G. Then L < G.
If |L|p > |D|, then L is p-nilpotent by the minimal
choice of G, contrary to Step 8. If |L|p ≤ |D|. Take
P∗ ≥ L ∩ P such that |P∗| = p|D|. Hence P∗ is a
Sylow p-subgroup of P∗L. Since every maximal sub-
group of P∗ is of order |D|, every maximal subgroup
of P∗ is s-quasinormally embedded in G by hypothe-
ses, thus in P∗L by Lemma 1 (i). Now applying The-
orem 13, we get P∗L is p-nilpotent. Therefore, L is
p-nilpotent, contrary to Step 8.

Step 10. The final contradiction.

Suppose that H is a subgroup of P with |H| =
|D| and Q is a Sylow q-subgroup with q ̸= p. Then
HQg = QgH for any g ∈ G by the hypotheses that
H is s-quasinormally embedded in G and Lemma 8.
Since G is simple by Step 9, G = HQ from Lemma
10, the final contradiction. ⊓⊔

The following corollaries is immediate from The-
orem 19.

Corollary 20 Suppose that G is a group. If every
non-cyclic Sylow subgroup of G has a subgroup D
such that 1 < |D| < |P | and every subgroup H of
P with order |H| = |D| or with order 2|D| (if P is
a nonabelian 2-group and |P : D| > 2) is either s-
quasinormally embedded or weakly s-permutable in
G, then G has a Sylow tower of supersolvable type.

Corollary 21 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If P has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D| or

with order 2|D| (if P is a nonabelian 2-group and |P :
D| > 2) is s-quasinormally embedded in G. Then G
is p-nilpotent.

Corollary 22 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If P has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is weakly s-permutable in G. Then G is
p-nilpotent.

Corollary 23 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If P has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-permutable in G. Then G is p-
nilpotent.

Corollary 24 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If P has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D| or
with order 2|D| (if P is a nonabelian 2-group and |P :
D| > 2) is permutable in G. Then G is p-nilpotent.

Corollary 25 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. If P has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is normal in G. Then G is p-nilpotent.

Corollary 26 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. Suppose that every cyclic subgroup of P of prime
order or order 4 is either s-quasinormally embedded
or weakly s-permutable in G. Then G is p-nilpotent.

Corollary 27 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. Suppose that every cyclic subgroup of P of prime
order or order 4 is s-quasinormally embedded in G.
Then G is p-nilpotent.

Corollary 28 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. Suppose that every cyclic subgroup of P of prime
order or order 4 is weakly s-permutable in G. Then
G is p-nilpotent.

Corollary 29 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. Suppose that every cyclic subgroup of P of prime
order or order 4 is s-permutable in G. Then G is p-
nilpotent.
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Corollary 30 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. Suppose that every cyclic subgroup of P of prime
order or order 4 is permutable in G. Then G is p-
nilpotent.

Corollary 31 Let p be the smallest prime dividing the
order of a group G and P be a Sylow p-subgroup of
G. Suppose that every cyclic subgroup of P of prime
order or order 4 is normal in G. Then G is p-nilpotent.

Theorem 32 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such that
G/E ∈ F . Suppose that every non-cyclic Sylow sub-
group of E has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is either s-quasinormally embedded or
weakly s-permutable in G. Then G ∈ F .

Proof. Suppose that P is a non-cyclic Sylow p-
subgroup of E, ∀p ∈ π(E). Since P has a subgroup
D such that 1 < |D| < |P | and every subgroup H
of P with order |H| = |D| or with order 2|D| (if P
is a nonabelian 2-group and |P : D| > 2) is either
s-quasinormally embedded or weakly s-permutable in
G by hypotheses, thus in E by Lemma 1 (i). Applying
Corollary 20, we conclude that E has a Sylow tower
of supersolvable type. Let q be the maximal prime di-
visor of |E| and Q ∈ Sylq(E). Then Q E G. Since
(G/Q,E/Q) satisfies the hypotheses of the theorem,
by induction, G/Q ∈ F . For any subgroup H of Q
with |H| = |D|, since Q ≤ Oq(G), H is either s-
quasinormal or weakly s-permutable in G by Lemma
8. Since s-quasinormal implies weakly s-permutable
and F ∗(Q) = Q by Lemma 11, we get G ∈ F by
applying Lemma 12. ⊓⊔

The following corollaries is immediate from The-
orem 32.

Corollary 33 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such that
G/E ∈ F . Suppose that every non-cyclic Sylow sub-
group of E has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D| or
with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-quasinormally embedded in G.
Then G ∈ F .

Corollary 34 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such that
G/E ∈ F . Suppose that every non-cyclic Sylow sub-
group of E has a subgroup D such that 1 < |D| < |P |

and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is weakly s-permutable in G. Then
G ∈ F .

Corollary 35 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such that
G/E ∈ F . Suppose that every non-cyclic Sylow sub-
group of E has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-permutable in G. Then G ∈ F .

Corollary 36 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such that
G/E ∈ F . Suppose that every non-cyclic Sylow sub-
group of E has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is permutable in G. Then G ∈ F .

Corollary 37 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such that
G/E ∈ F . Suppose that every non-cyclic Sylow sub-
group of E has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is normal in G. Then G ∈ F .

Corollary 38 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that every
maximal subgroup of any non-cyclic Sylow subgroup
of E is either s-quasinormally embedded or weakly
s-permutable in G. Then G ∈ F .

Corollary 39 Let F be a saturated formation con-
taining U . Suppose that G is a group with a nor-
mal subgroup E such that G/E ∈ F . Suppose that
every cyclic subgroup of any non-cyclic Sylow sub-
group of E of prime order or order 4 is either s-
quasinormally embedded or weakly s-permutable in
G. Then G ∈ F .

Corollary 40 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that ev-
ery maximal subgroup of any non-cyclic Sylow sub-
group of E is s-quasinormally embedded in G. Then
G ∈ F .

Corollary 41 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
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subgroup E such that G/E ∈ F . Suppose that every
cyclic subgroup of any non-cyclic Sylow subgroup of
E of prime order or order 4 is s-quasinormally em-
bedded in G. Then G ∈ F .

Corollary 42 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that every
maximal subgroup of any non-cyclic Sylow subgroup
of E is weakly s-permutable in G. Then G ∈ F .

Corollary 43 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that every
cyclic subgroup of any non-cyclic Sylow subgroup of
E of prime order or order 4 is weakly s-permutable in
G. Then G ∈ F .

Corollary 44 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that every
maximal subgroup of any non-cyclic Sylow subgroup
of E is s-quasinormal in G. Then G ∈ F .

Corollary 45 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that every
cyclic subgroup of any non-cyclic Sylow subgroup of
E of prime order or order 4 is s-quasinormal in G.
Then G ∈ F .

Corollary 46 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that every
maximal subgroup of any non-cyclic Sylow subgroup
of E is quasinormal in G. Then G ∈ F .

Corollary 47 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that ev-
ery cyclic subgroup of any non-cyclic Sylow subgroup
of E of prime order or order 4 is quasinormal in G.
Then G ∈ F .

Corollary 48 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that every
maximal subgroup of any non-cyclic Sylow subgroup
of E is normal in G. Then G ∈ F .

Corollary 49 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Suppose that ev-
ery cyclic subgroup of any non-cyclic Sylow subgroup
of E of prime order or order 4 is normal in G. Then
G ∈ F .

Theorem 50 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup of F ∗(E) has a subgroup D such that
1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian 2-
group and |P : D| > 2) is either s-quasinormally em-
bedded or weakly s-permutable in G. Then G ∈ F .

Proof. We distinguish two cases:

Case 1. F = U .

Let G be a minimal counter-example.

Step 1. Every proper normal subgroup N of G
containing F ∗(E) (if it exists) is supersolvable.

If N is a proper normal subgroup of G containing
F ∗(E), then N/N ∩ E ∼= NE/E is supersolvable.
By Lemma 11 (iii), F ∗(E) = F ∗(F ∗(E)) ≤ F ∗(E ∩
N) ≤ F ∗(E), so F ∗(E ∩ N) = F ∗(E). For any
Sylow subgroup P of F ∗(E ∩ N) = F ∗(E), P has
a subgroup D such that 1 < |D| < |P | and every
subgroup H of P with order |H| = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| >
2) is either s-quasinormally embedded or weakly s-
permutable in G by hypotheses, thus in N by Lemma
1 (i) and Lemma 2 (i). So N and N ∩ H satisfy the
hypotheses of the theorem, the minimal choice of G
implies that N is supersolvable.

Step 2. E = G.

If E < G, then E ∈ U by Step 1. Hence
F ∗(E) = F (E) by Lemma 11. It follows that every
Sylow subgroup of F ∗(E) is normal in G. By Lemma
8, every non-cyclic Sylow subgroup of F ∗(E) has a
subgroup D such that 1 < |D| < |P | and every sub-
group H of P with order |H| = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| > 2)
is either s-quasinormal or weakly s-permutable in G.
Applying Lemma 12 for the special case F = U ,
G ∈ U , a contradiction.

Step 3. F ∗(G) = F (G) < G.

If F ∗(G) = G, then G ∈ F by Theorem 32,
contrary to the choice of G. So F ∗(G) < G. By Step
1, F ∗(G) ∈ U and F ∗(G) = F (G) by Lemma 11.

Step 4. The final contradiction.

Since F ∗(G) = F (G), each non-cyclic Sylow
subgroup of F ∗(G) has a subgroup D such that 1 <
|D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is either s-quasinormal
or weakly s-permutable in G by Lemma 8. Applying
Lemma 12, G ∈ U , a contradiction.
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Case 2. F ̸= U .

By hypotheses, every non-cyclic Sylow subgroup
of F ∗(E) has a subgroup D such that 1 < |D| < |P |
and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is either s-quasinormally embedded
or weakly s-permutable in G, thus in E Lemma 1 (i)
and Lemma 2 (i). Applying Case 1, E ∈ U . Then
F ∗(E) = F (E) by Lemma 11. It follows that each
Sylow subgroup of F ∗(E) is normal in G. By Lemma
8, each non-cyclic Sylow subgroup of F ∗(E) has a
subgroup D such that 1 < |D| < |P | and every sub-
group H of P with order |H| = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| > 2)
is either s-quasinormal or weakly s-permutable in G.
Applying Lemma 12, G ∈ F . These complete the
proof of the theorem. ⊓⊔

The following corollaries are immediate from
Theorem 50.

Corollary 51 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup of F ∗(E) has a subgroup D such that
1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian 2-
group and |P : D| > 2) is s-quasinormally embedded
in G. Then G ∈ F .

Corollary 52 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup of F ∗(E) has a subgroup D such that
1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is weakly s-permutable in
G. Then G ∈ F .

Corollary 53 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup of F ∗(E) has a subgroup D such that
1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is s-permutable in G. Then
G ∈ F .

Corollary 54 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup of F ∗(E) has a subgroup D such that

1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is permutable in G. Then
G ∈ F .

Corollary 55 Let F be a saturated formation con-
taining U , the class of all supersolvable groups and
G a group with E as a normal subgroup of G such
that G/E ∈ F . Suppose that every non-cyclic Sy-
low subgroup of F ∗(E) has a subgroup D such that
1 < |D| < |P | and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian 2-
group and |P : D| > 2) is normal in G. Then G ∈ F .

Corollary 56 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if
and only if every maximal subgroup of any Sylow sub-
group of F ∗(E) is either s-quasinormally embedded
or weakly s-permutable in G.

Corollary 57 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if
and only if every cyclic subgroup of any Sylow sub-
group of F ∗(E) of prime order or order 4 is either s-
quasinormally embedded or weakly s-permutable in
G.

Corollary 58 ([9, Theorem 1.1]) Let F be a satu-
rated formation containing U . Suppose that G is a
group with a normal subgroup E such that G/E ∈
F . Then G ∈ F if and only if every maximal
subgroup of any Sylow subgroup of F ∗(E) is s-
quasinormally embedded in G.

Corollary 59 ([9, Theorem 1.2]) Let F be a satu-
rated formation containing U . Suppose that G is a
group with a normal subgroup E such that G/E ∈
F . Then G ∈ F if and only if every cyclic subgroup
of any Sylow subgroup of F ∗(E) of prime order or
order 4 is s-quasinormally embedded in G.

Corollary 60 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if
and only if every maximal subgroup of any Sylow sub-
group of F ∗(E) is weakly s-permutable in G.

Corollary 61 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if
and only if every cyclic subgroup of any Sylow sub-
group of F ∗(E) of prime order or order 4 is weakly
s-permutable in G.
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Corollary 62 ([7, Theorem 3.4]) Let F be a satu-
rated formation containing U . Suppose that G is a
group with a normal subgroup E such that G/E ∈
F . Then G ∈ F if and only if every maximal
subgroup of any Sylow subgroup of F ∗(E) is s-
quasinormal in G.

Corollary 63 ([8, Theorem 3.3]) Let F be a satu-
rated formation containing U . Suppose that G is a
group with a normal subgroup E such that G/E ∈
F . Then G ∈ F if and only if every cyclic subgroup
of any Sylow subgroup of F ∗(E) of prime order or
order 4 is s-quasinormal in G.

Corollary 64 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if
and only if every maximal subgroup of any Sylow sub-
group of F ∗(E) is quasinormal in G.

Corollary 65 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if and
only if every cyclic subgroup of any Sylow subgroup
of F ∗(E) of prime order or order 4 is quasinormal in
G.

Corollary 66 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if
and only if every maximal subgroup of any Sylow sub-
group of F ∗(E) is normal in G.

Corollary 67 Let F be a saturated formation con-
taining U . Suppose that G is a group with a normal
subgroup E such that G/E ∈ F . Then G ∈ F if and
only if every cyclic subgroup of any Sylow subgroup
of F ∗(E) of prime order or order 4 is normal in G.

4 Conclusion
The results explained in the previous sections show
that the method that we replace conditions for all max-
imal subgroups or all minimal subgroups of Sylow
subgroups of G by conditions referring to only some
subgroups of Sylow subgroups of G in order to in-
vestigate the structure of a finite group is very use-
ful. Results of this type are interesting. In addition,
there are many other generalizations of the normal-
ity, for example, SS-quasinormal subgroups in [6];
c∗-normality in [13]; X-semipermutable subgroups in
[17]; c-supplemented subgroups in [18]. As an appli-
cation, we may consider using the above special sub-
groups to characterize the structure of finite groups.
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